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Exact results and scaling properties of small-world networks
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Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 19 August 1999!

We study the distribution function for minimal paths in small-world networks. We derive its general form,
which we verify numerically, and also discuss its scaling properties. Using the general form of this distribution

function, we derive exact expressions for the average minimal distancel̄ and its variances2. Finally, we study
the limit of large system sizes and obtain some approximate results.

PACS number~s!: 84.35.1i, 05.50.1q, 64.60.Fr, 87.18.Sn
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Recently Watts and Strogatz@1# have studied a class o
networks that can be ‘‘tuned’’ from an ordered to a rando
state by varying a single parameter. For a range of param
values, they found that the networks resembled ordered
works locally but random networks globally. They nam
this class of networks ‘‘small-world’’ networks because
their relevance to a well-known problem in sociology@2#.
Since their introduction, small-world networks and the
properties have received considerable attention@4–18#, in
part because of their possible application to a broad rang
systems, ranging from social networks@2# to coupled oscil-
lators @3#.

Much of the work characterizing the properties of sma
world networks has focused on the average minimal dista

l̄ separating two randomly chosen points in the netwo

Previous work has shown thatl̄ has two scaling regimes: fo

small system sizesL, it is found thatl̄ ;L, whereas for large

L, l̄ ; log(L) @19#. A scaling form forl̄ has been propose
and numerically confirmed; however, the nature of the cro
over between the two scaling regimes has been the subje
debate@5,8,10,12,14,15#. In this work, we will focus on the
basic probability distributions for small-world networks, an
as a consequence obtain exact results forl̄ and its variance
s2.

We generate the networks following the prescription
Newman and Watts@8#. We start with a one-dimensiona
periodic lattice withL52N sites and nearest neighbor co
nections. We then add shortcuts uniformly with probabilityp
such that the average number of shortcuts added isx5pL.
We denote the distance between two sites, counted along
lattice using only nearest neighbor links, as the Euclide
distance. By contrast, the shortest distance between two s
counted along any bond including shortcut bonds, is ca
the minimal distance.

Using these definitions, we now introduce the followin
probability functions:~i! P̄(num), the probability that two
sites are separated by Euclidean distancen given that their
minimal distance ism; ~ii ! P(mun), the probability that two
sites have minimal separationm given that their Euclidean
distance isn; and ~iii ! Q(m), the probability that two ran-
domly chosen sites have a minimal separationm. Recently,
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Dorogovtsev and Mendes@18# have introduced two exactly
solvable models similar to small-world networks. For the
models they drive the explicit form ofP(mun), from which
they obtainl̄ and other properties of their networks. In th
paper, we derive the general form ofP(mun) for small-world
networks, and we confirm it numerically. Using this form
we derive an exact expression forl̄ and for the variance of

l̄ , s2[l 2̄2 l̄ 2. We also study the scaling properties
P(mun) and obtain some approximate results for it in t
limit of large L. Note that in describing the networks, w
have considered the case of coordination number of 2k52
for each site. However, our arguments for the general fo
of P(mun) are valid for arbitraryk. For simplicity we will
consider the casek51 in the rest of this paper, and gene
alizations to arbitraryk will be indicated as appropriate.

We begin by deriving the general form ofP̄(num). First,
since the minimal distance cannot exceed the Euclidean
tance, P̄(num)50 for n,m. For n.m, the minimal path
must use at least one shortcut. But taking a shortcu
equivalent to randomizing the position along the netwo
since the shortcuts are uniformly distributed. Hence,P̄(num)
must be independent ofn for all n.m. Finally, for n5m, it
is not necessary to use any shortcuts in the minimal path
the arguments invoked forn.m do not apply. Instead
P̄(nun) is determined by the constraint that the probabil
distribution is normalized.

We now derive the general form ofP(mun). From el-
ementary probability theory, we have

P̄~num!Q~m!5H 2

L21
P~mun!, n,N

1

L21
P~mun!, n5N.

~1!

From Eq. ~1! and the properties discussed in the previo
paragraph,P(m,nun)[ f (m) is independent ofn, and
P(m.nun)50. Thus the general form ofP(mun) is

P~mun!5Q~n2m! f ~m!1S 12 (
m851

n21

f ~m8!D dm,n , ~2!

whereQ(x) is defined byQ(x)50 for x<0 andQ(x)51
for x.0. We have numerically confirmed the validity of th
form, as shown in Fig. 1.
4268 © 2000 The American Physical Society
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The fact thatP(mun) is completely determined byf (m)
implies that we need to consider only ‘‘diametrically opp
site sites’’ ~d.o.s! in its computation @since f (m)
5P(muN)]. It also has some surprising consequences,
gardless of the exact form off (m). To explore these, we
examine some other properties of small-world networks.
example, besidesl̄ , the quantitŷ l (n)&, which is the aver-
age minimal distance separating two sites with Euclide
distancen, has been discussed in the literature@14,15#. We
can express both these quantities in terms ofP(mun) as fol-
lows:

^l ~n!&5 (
m51

n

mP~mun!, ~3!

l̄ 5
1

L21 S 2 (
n51

N21

(
m21

n

mP~mun!1 (
m51

N

mP~mun!D . ~4!

Similar expressions hold for^l 2(n)&, ^l 3(n)&, andl̄ 2. Sub-
stituting the form ofP(mun) @Eq. ~2!# into the expression for
l̄ @Eq. ~4!, we obtain

l̄ 5
1

L21 F2 (
n51

N21

(
m51

n21

m f~m!12(
n51

N

nS 12 (
m51

n21

f ~m!D
1 (

m51

N21

m f~m!1NS 12 (
m51

N21

f ~m!D G , ~5!

which can be simplified to give the following exact expre
sion:

l̄ 5^l ~N!&S 11
1

L21D2
^l 2~N!&

L21
. ~6!

Similarly, we obtain an expression for the variance of t

distribution of minimal distances,s25 l̄ 22 l̄ 2:

FIG. 1. The values off (m) as obtained fromP(mun), which is
calculated from simulations for then valuesn55 (s), n510 ~h!,
n515 ~* !, andn5500 (L). This figure confirms the statement th
P(m,nun) is independent ofn. The parameters for the figure ar
L51000, p50.25. Similar confirmation has been obtained fro
simulations for a wide range of parameter values.
-

r

n

-

e

s25^l 2~N!&S 11
1

L21D1
1

3~L21!
@^l ~N!&24^l 3~N!&#

2F ^l ~N!&S 11
1

L21D2
^l 2~N!&

L21 G2

. ~7!

The surprising aspect of the above equations is thatl̄ and
s2, which are average properties of the entire network,
completely determined by the mean separation of d.
^l (N)& and its higher momentŝl 2(N)& and^l 3(N)&. Note
that Eqs.~6! and ~7! can readily be generalized to anyk by
performing the substitutionL° dL/ke.

When the network has exactly one shortcut, we can c

culate l̄ analytically using Eq.~6!. In this case, in the limit
of large N, we get^l (N)&5 2

3 N and ^l 2(N)&5 1
2 N2 which

givesl̄ 5 5
12 N. As expected, this is in perfect agreement w

the results obtained by Strang and Eriksson@20#. We have

further confirmed Eq.~6! by numerically computingl̄ using
the following two procedures:~i! averaging the minimal dis-
tance over all pairs of sites, and~ii ! considering only pairs of
d.o.s. and using Eq.~6!. The results, which are presented
Fig. 2, indicate that the two procedures are equivalent.

The results obtained so far have been independent of
functional form off (m). To gain further insight, we conside
the scaling properties off (m), following the real-space
renormalization group~RG! analysis of Newman and Watt
@8#. This procedure consists of blocking pairs of adjace
sites while preserving the total number of shortcuts in
network. This gives for the transformed latticeN85N/2 and
p852p. We note the following features of this transform
tion @8#: ~i! the geometry of the minimal paths is unchang
in almost all cases, and the number of site pairs for which
geometry does change is negligible for largeL and smallp,
and ~ii ! the distance along the minimal path is halved, i.
m85m/2 for largeL and smallp. Furthermore, we note tha
the RG transformation maps two pairs of d.o.s. into a sin

FIG. 2. The average minimal separationl̄ 5Lg(x) vs the aver-
age number of shortcuts,x5pL, as obtained from numerical simu
lation by averaging over all pairs~* !, numerical simulation using
Eq. ~6! (s), and Pade´ fit as given by Ref.@12# ~solid line!. This
confirms the exact expression Eq.~6!.



in

i-
r

vi-

hat
e

of

s
the

-

o

e
uss-

4270 PRE 61R. V. KULKARNI, E. ALMAAS, AND D. STROUD
pair. This fact, in conjunction with points~i! and ~ii ! above,
give us

f 8S m

2
,
N

2
,2pD52 f ~m,N,p!, ~8!

where we have made the dependence onN and p of f (m)
explicit. For largeN, taking the continuum limit, we can
generalize the above expression to

f 8S m

l
,
N

l
,lpD5l f ~m,N,p!. ~9!

These observations can now be summarized in the follow
scaling form:

f ~m,N,p!5
1

N
h~y,x! ~10!

where

y5
m

N
, x52pN.

By fixing x, we have observed the scaling collapse off (m)
for different values ofN andp. This is demonstrated numer
cally for x510 in Fig. 3. Our simulations indicate that fo
any givenx, this scaling collapse holds for smallp and large
enoughN.

It is interesting to note that the scaling properties ofl̄ can
be derived from the scaling form off (m). Using the defini-
tion of l̄ @Eq. ~4!# and the scaling form forf (m), we get

l̄ 5
L

4 S 12E
0

1

dy~12y!2h~y,x! D ~11!

5Lg~x!, ~12!

FIG. 3. This figure confirms the proposed scaling form
f (m,N,p) @Eq. ~10!# for x5pL510 and system sizesL5500 ~* !,
750 (L), and 1000 (s). We have confirmed this scaling collaps
for a wide range ofx values.
g

which is consistent with the scaling form proposed in pre
ous works. Similar scaling forms hold forl̄ 2, ^l (N)&, and
^l 2(N)&.

We now consider the limit of large system sizes such t
x@1. In this limit, we have observed numerically that w
can approximatef (m) by a Gaussian distribution function:

f ~m!5
1

A2psg
2

e2(m2mg)2/2sg
2
, ~13!

wheremg andsg
2 are, respectively, the mean and variance

the distribution. The corresponding fit forx5250 and x
5500 is shown in Fig. 4. Our simulations indicate that ax
increases, (mg /sg) also increases, as can be seen from
figure.

Using the Gaussian approximation forf (m), we are now
able to calculate the function̂l (n)&, which has been dis-
cussed elsewhere@14,15#. From Eqs.~3! and~13! in the limit
mg@sg , we obtain

FIG. 5. The mean distancêl (n)& between two sites having
Euclidean separationn for x5pL5250. Results are shown for nu
merical simulation (s) and analytic expression@Eq. ~14!# ~solid
line!. The analytic expression is an excellent fit forx@1.

f FIG. 4. f (m) vs m for x5pL5250 andL52000. The solid line
is the Gaussian fit to the calculated data. The inset shows the Ga
ian fit for x5500 andL52000. Note that with increasingx, the
Gaussian becomes more sharply peaked.
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^l ~n!&5n2 1
2 ~n2mg!FFS n2mg

A2sg
D 11G

1
sg

A2p
e2(n2mg)2/2sg

2
, ~14!

where we have assumedF(mg /A2sg)51. In this limit, sub-
stituting the above form off (m) into the definitions of
^l (N)& and ^l 2(N)&, we get

mg5^l ~N!&, ~15!

sg
25^l 2~N!&2^l ~N!&2. ~16!

In particular, these equations imply thatmg andsg have
the following scaling forms:mg;Lg1(x) and sg;Lg2(x).
Using these relations, we see that the Gaussian ansat
f (m) @Eq. ~13!# is consistent with the scaling form propose
in Eq. ~10!. In Fig. 5, we compare Eq.~14! to results from
our simulations forx5250. In the limit L→`, we have
(sg /mg)→0, which upon substitution into Eq.~14! gives us
ce

rin
for

^l ~n!&5H n, n,^l ~N!&

^l ~N!&, n>^l ~N!&.
~17!

This expression for̂l (n)& is consistent with that previously
derived exactly in Refs.@14,15# in the same limit.

In conclusion, we have studied the probability distributi
for minimal path lengths in small-world networks. We ha
presented arguments for the general analytical form this
tribution must take, and have verified this numerically. Usi
this form, we have also derived some exact relations.
have obtained an approximate scaling form for this proba
ity distribution in the limit of large system sizes. It is ou
hope that further efforts along these lines will provide a b
ter understanding of the structure of small-world network
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